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ABSTRACT
We consider a viscoelastic fluid filling a bounded domain in R3 under
the influence of a small body force. The fluid is described by certain
differential constitutive equations. We use an iterative method to prove the

existence of steady flows.
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SIGNIFICANCE AND EXPLANATION
estions of existence and uniqueness of steady flows of viscoelastic
. fluids have thus far not been understood, even for slow flows perturbing Y
rest. This paper provides an existence result for slow flows with no in- and 1";;.,;__
it
outflow boundaries. The fluid is agsumed to be described by constitutive :9:;5:2‘
Wt
i
equations of a differential nature. The method used to prove existence is
constructive and in fact very close to procedures used in numerical
calculations.
. The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report. "
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EXISTENCE OF SLOW STEADY FLOWS OF VISCOELASTIC FLUIDS
WITH DIFFERENTIAL CONSTITUTIVE EQUATIONS

Michael Renardy

1. INTRODUCTION

Although existence theorems for low Reynolds number steady flows
of Newtonian fluids are well known (see e.g. [S5]), no such theorems have
been establishe& for viscoelastic fluids. There are formal pefturbation
expansions which are used for slow flows (see e.g. [10]), but the

justification of these expansions leads to difficult problems in singular

perturbation theory, which have not been solved. Niggemann (8] has

given a convergence proof for expansions of this nature in a one-dimensional
model problem, which has certain features in common with equations in

viscoelasticity.

In this paper, we prove the existence of slow stead& flows of certain
viscoelastic fluids by using an iterative method. The basic idea is very
similar to existence proofs for initial value problems in hyperbolic partial
differential equations. We first show that all] iterates are bounded and
small in a certain norm,and we then show that the iteration converges
in a weaker norm. The iteration we use is similar to procedures employed
in numerical calculations (for a review, see [1]), and the ideas used here
shouid therefore be useful in proving convergence of numerical schemes.

We shall also use our results to justify the formal perturbation methods

as asymptotic expansions, but we do not prove their convergence.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant Nos. MCS$-8210950 and MCS-8215064, and by the Centre for Mathematical

Analysis, Australian National University.
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We study steady flows of a viscoelastic liquid in a bounded domain
qcr’ . The fluid satisfied the no-slip condition on the wall and moves
under the influence of a given body force. (Problems arising in applications
usually have inflow boundaries, which require additional boundary conditions.
Such problems are more difficult than the one studied here). The equations

1

for steady flow are as follows

P(uViu - div] + Vp-£=0
in Qc<R
(1.1) divu =0

u=0 on N .

Here u = (“1’“2’“3) is the velocity vector, p the pressure and T

the extra stress. f is the given body force and p is the density.

-
:3 Throughout the paper,  is assumed to be a bounded domain with a
N
4
‘{:‘ smooth (for simplicity, say C™-) boundary.
~"
» The extra stress is related to the velocity field by a constitutive
equation. Here we deal with differential constitutive equations. For
simplicity, we adopt a particular constitutive law, which exemplifies
= the typical structure. This model, the "rubberlike liquid” (3], (7],
-* .
‘\s: is given by
2
e * ) g
= 2n.D+ T,
= I=e2s b b
_2 (1.2)
Te, . T
o @9 - T - W + AT, = 2040
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2
3 where Vu is the velocity gradient : (Vg)ij = -5;; , and
. D= %(vg_ + (Vg)'r). N is an arbitrary positive integer and “k'xk are "

(] HERAN

: positive constants (n, may be zero). : \:::‘j.:

. .'&f.:‘.

" e '..q.{i':o

y The essential difficulty for the analysis arises from the teras f:'.;:

) (.\_I_'V)Ik‘ The particular form of the terms (Vl_x_):k and Ik(Vg)T is

& unimportant, and we could replace them by other nonlinear combinations

:.'_ of (Vu) and ‘;‘k. Our analysis can thus be extended to fluids with

other differential constitutive equations, such as those of Oldroyd {91,

; Leonov [6] and Giesekus - [2].
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2. THE CASE OF THE UPPER CONVECTED MAXWELL FLUID

In this case, we set Ny = 0 and N=1, i.e. the constitutive

equation takes the form
(2.1) @9 - (T - T’ + A = 2mQ . | ‘
By applying the divergence operator, we obtain
(2.2) (-V)divT - (Vu)div T + AdivT = T : 3%u + nAdu .
Here we use the notation T : 32 = J T 2 Next, we substitute

use = ° J « jk n;sx—k- . »
divT = p(uV)u + Vp - £ from (1.1), and obtain

(2.3) V[(ap+Ap] - [(Vw) + (Vo) "1Vp= (ueW)E

v (TW)f=Af = T : 3%u+ nAbu - p(u-¥) (u-Wy

+ p(Vu) (u*V)u - Ap(u-Vu .

In the following, we regard (2.3), with the condition div us=o0
and the no-slip condition, as a perturbation of the Stokes problem. This

equation contains a 'modified pressure" g = (u'V)p+Ap . Solutions are

found by the following iteration scheme. o

2 0_ 0 0 Tl

(2.4) =0, =0, =g, et
.‘. ’ .- :
+ + S + LI AEAC,
(2.5) In . 329" l*nMgn | p(\_xn-V) (gn-V)t_xn I-an 1 p i d
NN
n nTyo N N n PR
- (7" (1" @ E 4 (e AE C RN
B OS¢
QAR

n . th iy M )

- p(Tu) ("N s Ao (", .

oy

n+1 n+l .1 ‘:‘:‘:;:;
divu" =0, u""=0 on 3, fff =0, O
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. AIn+l - nA[Vgn*lo (Vg"’I)T]
We denote by H%(Q) the usual Sobolev spaces and by "'"s the
norm in HS(Q) . The following lemma is immediate from the invertibility

of the Stokes operator ([S] and elementary perturbation theory [4].

LEMMA 2.1: Let s be an integer =2 1 . Then there are positive constants

such that the following holds: If "In"5+1 =€ and

1 2
Hg"ﬂs§1 =€, , then equation (2.5) has a wnique soiution 9"’1 R qn’l .

€, and €

This solution obeys an estimate of the form

n+l ' n
™ + Mg, M€,y

+1 n
u "yq = CoUIB g g ™

s+2+ g s+l ~ s+l s+2

n,2 2
+ IEg* a"ig, g+ u™Ig,, 0 -

The following lemma concerns the solvability of equation (2.6).

LEMMA 2.2: There is gsome €, > 0 such that, for Hgn’lﬂ

<€
3 s+2 - "3 °
div gp*l =0, 9n+1lag =0 , the wurique solution pm1 of (2.6) satisfies

an estimate of the form

Sketch of the proof: Equation (2.6) is easily solved by the method of

characteristics, and existence and uniqueness follow immediately. Moreover,

the operator (gn*l-V) is skeﬁ-adjoint in LZ(Q) ,» whence

n+l 1, nel ‘
1" Mg = 2 ia™ g - el
- ° RO
RN
'-“..“.s.

-5- :

e N e S e e e e
A T S G DGR AL




R e D T T T O N O R oy O O L L TR O AN K o

[
14

MR s 2 ,% e Al S LT

L PR

ARAES ) TR AR R

LSRN AN PRFISN

NTRTRTREN

.
., .
1o, .

.
.,

I Mg’ |

A oo BSOS

.
‘a’atalatel

LA - 3

&
(21 Y

4.7,

»
.

Estimates for derivatives arc obtained by differentiating the
equation. (Such estimates are formal and the calculations involve derivatives '
not a priori known to exist. .However, it is easy to see that p is
smooth if u and q are, and we can thus construct approximating sequences

satisfying uniform estimates.)

Since equation (2.7) can be regarded as a perturbation of (2.6),

we have

n+l

LEMMA 2.3: There ts a constant €, such that, for |lu the

unique solution of (2.7) satisfies an estimate of the form

+1 n+l
IT" g,y = Coll™ g, g -

By combining the estimates contained in lemmas 2.1- 2.3, it can

be shown that all iterates remain bounded if - f is small.

LEWA 2.4:  If |, ie sufficiently small, then [l » IRy, »

Ilq"lls,1 and |T"| o1 have (small) bounds independent of n .

Next we show that the iteration generates a convergent sequence in

a weaker nomm,

LEMMA 2.5: Let ||f||s Y be sufficiently small. Then there i8 a constant
Y <1 such that

n+l
I "

n+l -
™o, 1 - QM s vt - o

n-1
gy * M- Q0N

Sketch of the proof: From (2.6), we obtain
n-1 1

(g"-V)pn- (y .v)pn-l . A(p"-p“'l) - qn_ qn- .

This is equivalent to
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: n-1
=q-q .

From this and the bounds already established by lemma 2.4, we

conclude that, for some constant C 4 e have

n n-lll

lIp" - p n-1j

n -1
g+ =™

n
s S Cqllla”-q sal -

Similarly, we find from (2.7)

-1 n n-1
I - T g = el - T,

Next, we subtract (2.5)n and (Z.SJn_1 . By using lemma 2.4 and
the already established estimates for p“- p“'1 and ‘[“- I"'l , we easily

obtain the lemma. We omit the details of the calculatiea.

Thus we have proved

THEOREM 2.6: Let s be an integer =1 and let [fl ,, be sufficiently

s+l

small. Then there exists a solution u € HS+2 » P € H"l » TE€H for

equations (1.1), (2.1), obtainable by the iteration procedure (2.4) - (2.7).

Remark:

Let us replace f by ef . If s is chosen large enough, then we
can, by following similar procedures as above, obtain estimates for

difference quotients of the solution with respect to ¢ . This shows that

the solution depends smoothly on € and therefore establishes the

asymptotic validity of Rivlin-Ericksen expansions. In preoblems with

inflow boundaries, we should expect the situation to be quite different. i}::’;;‘;i

| S

Rivlin-Ericksen expansions are uniquely determined by prescribing velocities F’.
. RN
alone on the boundary. However, these boundary conditions are clearly not ,9_{ f\,.:.-.

_'.\ .,
Sty
enough to uniquely define flows of a Maxwell fluid. AR
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E 3. THE CASE OF SEVERAL RELAXATION MODES
A Ne apply the divergence operator to (1.2), and obtain as before
\ (3.1) (ueV)div T, - Vu div T, + Ay div T ‘
. 2
znkka-”!k tdu.,
X
~
o We write this as
1 2
(3.2) dwv T, = (W) «2)  [mA\susT, : 3"usVudiv ] .
" By inserting this into (1.1), we find
(3.3) P(erPy = nghy + § (@M e x)”
L a2 .
[nkAkAt_qu : 3%u ¢+ Vu div Ik] -Vp+f .
" The cases o # 0 and Ny = 0 are treated in different ways. We begin
_;:ﬁ with ny # 0 . In this case, we set
e 1
L[u] = ng ¢ E N Ak (V) + 3)
;ﬁ LEMMA 3.1: The operator L[u] is a bijection 1.2(9) - Lz(ﬂ) .
Proof: Since (u'V) is skew-adjoint, we have (((u*¥)+X) 'x,x) 20 for
> x € L2(Q) . Hence (L{u]x,x) = Ne(x,x) , and the invertibility follows
. from the Lax-Milgram theorea.
.
v By differentiating the equation Lfulx=y , it is not difficult
" to show that, if u and its derivatives are small, then L{u] also maps
)
Py higher Sobolev spaces bijectively into themselves.
. '
WNe set q = L[g]"p and apply the operator l.[t_x]'l to (3.3).
j We thus obtain |
o -8-
VRN ATt o T -;.-_,,- L S R SR
A o ( NN )"f: R R R R R R NS A NN IR




pLlul " (u-P)u = Au-vq+ L{u] ™ (] (o )

(3.4) [T, : 9%u+ Yu div T,0} + L€
+ Ly L (o) » ORI (TS RS I

We use the following iteration scheme

(3.5) w=0,4q%0, 10 =0

(3.6) Aun+1 - an+l - pL[gn]'l(gn'V)gn

S L™ LM e IR s 0% e ol div T
k
- L™ LT D @ e ) T T
k

Vi) + A"

div 9n+1 =0, 9n+1| =0, III qn+1 =0.
L 19) 14

.7 Wt - g™t et

Y n+l - nkkk[Vgn+1+ (V9n+1)T] .

T
k=k
We can now proceed in precisely the same manner as in section 2 to

establish convergence of the iteration scheme.

If Ng = 0 , the operator L[u] as defined above is not coercive
and lemma 3.1 does not hold. In this case, we adopt a different procedure.

Let X be any positive real number. We apply the operator (u«V)+ X to

.............................................................
....................................................
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\ (3.3) and obtain
(.8 p((u?) + X) (u-Nu = ((u-V)+ i){{ (w9 + Ayt

'.'::f . [r‘\kAkAl_l + Ik : 32\_l+ Vu div ’gk] -Vp+ g }.

o~ We now set L[u] = ((u-V)+ X) 2 nk)‘k ((u-V) + Ak)'l © "
K k -

L ~ ’ -1 , :I-:"::;.
) Z Mg+ Q=2 () + A b.o. :

L[u)] is a coercive operator in Lz(n) and l.[va]'l exists. We .
" can now apply the operator L[t_x]'1 to (3.8), define q= L[g]'l((l_.l-V) + i)p
f:: and set up an iteration scheme in an analogous fashion as before. '
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